Monitoring and Reporting Conditions

Permit Components

Industry-Specific Components of All Permits Municipal-Specific Components **Components Cover Page Effluent Limitations** Effluent Guidelines Secondary **Technology-Based** Equivalent to Secondary BPJ Water Quality-Based **Monitoring & Reporting** Requirements **Special Conditions Compliance Schedules** Storm Water Pretreatment Special Studies, Evaluations, and • BMPs • CSOs Other Requirements Municipal Sewage Sludge **Standard Conditions**

Learning Objectives

- Describe purpose of monitoring conditions
- Discuss the considerations for establishing monitoring conditions
- Explain analytical method requirements
- Describe reporting requirements

Purpose of Monitoring

- Determine compliance with permit conditions
- Establish a basis for enforcement actions
- Other
 - Assess treatment efficiency
 - Characterize effluents
 - Characterize receiving water

Types of Monitoring

- Self monitoring
 - Permittee performs sampling and analysis
- Compliance monitoring
 - Permitting authority monitors effluent during compliance inspection

Example POTW: Flow Diagram

Example: Industrial Flow Diagram

Self Monitoring Considerations

- Location
- Frequency
- Type of sample
- Cost

Considerations for Monitoring Location

- Is it on the facility's property?
- Is it accessible?
- Will the results be representative of the targeted wastestream?
- Are internal monitoring points needed?

Frequency Considerations

- Federal Requirements
 - Annual for all regulated pollutants
 - Waivers available for ELG based limits
 - 40 CFR 122.44 (a)(2)
- State Requirements
 - Consult State policy and procedures

Frequency Considerations (cont)

- Size and design of facility
- Type of treatment
- Location of discharge
- Frequency of discharge (batch, continuous)
- Compliance history
- Nature of pollutants
- Number of monthly samples used in developing permit limit

Types of Samples

- Grab Sample: Taken from a wastestream on a one-time basis without consideration of the flow rate of the wastestream and without consideration of time
 - Must be used to monitor certain parameters (e.g., pH, volatile organics, cyanide)
 - Used for monitoring batch discharges

Example Situation – Case #1

- Slight daily fluctuation in pollutant concentration and flow
- Recommendation: Grab Sample

Types of Samples (Continued)

- Composite: Sample composed of two or more discrete aliquots. The aggregate sample will reflect the average water quality over the sample period.
 - More representative measure of the discharge of pollutants over a given period of time
 - Accounts for variability in pollutant concentration and discharge flow rate
 - May be sequential discrete samples or a single combined sample

Types of Samples (Continued)

- Composite Sample is defined by the time interval between aliquots, and the volume of each aliquot (t, V).
 - Time Proportional (tc, Vc): Interval time and sample volume are constant

Flow Proportional: Interval time or sample volume may vary

Constant volume (tv, Vc)

Constant time (tc, Vv)

Example Situation — Case #2

- Regular fluctuations in pollutant loading over the course of the day
- Very slight fluctuations in flow
- Recommendation: Time Proportional Composite

Example Situation — Case #3

- Irregular fluctuations in pollutant loading over the course of the day
- Erratic fluctuations in flow
- Recommendation: Flow Proportional Composite

Types of Samples (Continued)

- Continuous Sample: Automated collection and analysis of a parameter in a discharge
 - Typically used for pH and flow
 - 40 CFR § 401.17 allows excursions for pH

Analytical Methods

- 40 CFR Part 136
 - Test methods in Appendix A to Part 136
 - Standard Methods for the Analysis of Water and Wastewater
 - Methods for the Chemical Analysis of Water and Wastes
 - Test Methods: Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater
- Alternative methods

Analytical Detection Level Considerations

- Compliance with Limit #1 → 40 CFR Part 136
- Compliance with Limit #2 → ???

Analytical Detection Level Considerations

- Compliance with Limit #1 → 40 CFR Part 136
- Compliance with Limit #2 → ???

Estimated Costs for Analytical Procedures

BOD5	\$30
TSS	\$15
TOC	\$60
Oil and Grease	\$35
Odor	\$30
Color	\$30
Turbidity	\$30
Fecal coliform	\$15
Metals (each)	\$15
Cyanide	\$35
Gasoline (Benzene, Toluene, Xylene)	\$100
Purgeable Halocarbons (EPA Method 601)	\$113
Acrolein and Acrylonitrile (EPA Method 603)	\$133
Purgeables (EPA Method 624)	\$251
Phenols (EPA Method 604)	\$160
Organochlorine Pesticides and PCBs (EPA Method 608)	\$157
Polynuclear Aromatic Hydrocarbons (EPA Method 610)	\$175
Dioxin (2, 3, 7, 8-TCDD) (EPA Method 613)	\$400
Base/Neutrals and Acids (EPA Method 625)	\$434
Priority pollutant scan*	\$2,000
TCLP	\$150
Acute WET	\$750
Chronic WET	\$1,500

^{*} Includes 13 metals, cyanide, dioxin, volatiles (purgeables), base/neutral and acids, pesticides and PCBs, and asbestos

Example #1: Annual Analytical Costs

	Times Per Year	Unit Cost (\$)	Annual Cost (\$)
BOD5	104	30	3,120
TSS	104	15	1,560
Fecal Coliform	104	15	1,560
Oil and Grease	104	35	3,640
		-	Гotal 9,880

Example #2: Annual Analytical Costs

Pollutant	No. Samples	Cost/ Sample	Cost/ Year
Priority Pollutants	4	\$2,000	\$8,000
Acute WET	4	\$750	\$3,000
Phenols	12	\$160	\$1,920
Cyanide	52	\$35	\$1,820
BOD5	156	\$30	\$4,680
TSS	156	\$15	\$2,340
Metals (Ni, Cr, Cu, Pb, Zn)	780	\$15	\$11,700
		Total	\$33,460

Reporting of Monitoring Results

- What is reported?
 - Data required in permit
 - Data for pollutants monitored more frequently than required
- When is information reported?
 - At least 1/year for limited pollutants
- Who is responsible for reporting?
 - The Permittee
- What format is used for reporting?
 - Discharge Monitoring Reports

Discharge Monitoring Reports (DMRs)

- Must be used to report selfmonitoring data
 - Required at 40 CFR §122.41(1)(4)(i)
 - States may alter format

Record Keeping

- Records of monitoring must be kept for 3 years
 - Records for sewage sludge use and disposal activities must be kept for 5 years
- Monitoring records include:
 - Date, place, and time
 - Individual performing sampling
 - Date of analysis
 - Individual performing analysis
 - Analytical methods used
 - Analytical results
- Permit should specify where records should be located

